Abstract
In this article, synthesis of white-light-emitting, highly stable carbon dots (CDs) using a colloidal synthesis technique is reported. It has been observed that the use of a non-coordinating solvent plays a vital role in the successful fabrication of highly stable CDs. Dilution-independent emissive behavior in CDs is achieved. Excitation-energy-dependent emissive behavior is observed in CDs. However, by surface passivating the CD core by using hexadecylamine (HDA), excitation wavelength dependence of emission is successfully minimized. Surface-functionalized CDs (SFCDs) show blue to green light tunable emission with the change in synthesis conditions. HDA also plays an important role in achieving dilution-independent emission in SFCDs. Furthermore, the carbon dots synthesized are highly inert, and their emission spectra are unaffected on exposure to an open atmosphere for as long as 9 days. A new class of highly crystalline carbon dots called “carbon onion rings” is reported.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.