Abstract
Four new isostructural rare earth metal-organic frameworks (RE-MOFs) were synthesized and full characterized, namely, {[(CH)2NH2]3[RE2(BTDBA)2(HCOO)]·5H2O·2DMF}n (H4BTDBA = (4',4'''-(benzo[c][1,2,5]thiadiazole-4,7-diyl)bis([1,1'-biphenyl]-3,5-dicarboxylic acid); RE = Eu (JXUST-34), Gd (JXUST-35), Tb (JXUST-36), and Dy (JXUST-37)). The single-crystal structures analysis shows that JXUST-34-37 are chain-based three-dimensional structures. Importantly, JXUST-34 exhibits excellent water, organic solvents, and acid-base stability, which can be used as a fluorescence sensor for folic acid and Al3+ with detection limits of 0.02 mM and 0.05 μM, respectively. The presence of free [(CH)2NH2]+ cations in the channels can engage the proton carrier during proton conduction. JXUST-34-37 display good proton conductivity, and the conductivities vary with relative humidity and temperatures, among which JXUST-37 has the highest conductivity of 9.66 × 10-3 S·cm-1 at 60 °C and 98% RH. The magnetic studies show that the -ΔSm of JXUST-35 reaches 16.13 J kg-1 K-1 at 2 K and ΔH = 7 T. JXUST-34-37 show multifunctional properties of fluorescence sensing, high proton conductivity, and magnetic refrigeration, which provides a new clue for the development of fluorescent-responsive, magnetic-refrigerant, and proton-conductive RE-MOF materials.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have