Abstract

Single-chain amphiphiles (SCAs) that self-assemble into large vesicular structures are attractive components of synthetic cells because of the simplicity of bilayer formation and increased membrane permeability. However, SCAs commonly used for vesicle formation suffer from restricted working pH ranges, instability to divalent cations, and the inhibition of biocatalysts. Construction of more robust biocompatible membranes from SCAs would have significant benefits. We describe the formation of highly stable vesicles from alkyl galactopyranose thioesters. The compatibility of these uncharged SCAs with biomolecules makes possible the encapsulation of functional enzymes and nucleic acids during the vesicle generation process, enabling membrane protein reconstitution and compartmentalized nucleic acid amplification, even when charged precursors are supplied externally.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call