Abstract

AbstractHighly sensitive temperature sensors are designed by exploiting the interparticle distance–dependent transport mechanism in nanocrystal (NC) thin films based on a thermal expansion strategy. The effect of ligands on the electronic, thermal, mechanical, and charge transport properties of silver (Ag) NC thin films on thermal expandable substrates of poly(dimethylsiloxane) (PDMS) is investigated. While inorganic ligand‐treated Ag NC thin films exhibit a low temperature coefficient of resistance (TCR), organic ligand‐treated films exhibit extremely high TCR up to 0.5 K−1, which is the highest TCR exhibited among nanomaterial‐based temperature sensors to the best of the authors' knowledge. Structural and electronic characterizations, as well as finite element method simulation and transport modeling are conducted to determine the origin of this behavior. Finally, an all‐solution based fabrication process is established to build Ag NC‐based sensors and electrodes on PDMS to demonstrate their suitability as low‐cost, high‐performance attachable temperature sensors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.