Abstract
The wearable electronic skin with high sensitivity and self-power has shown increasing prospects for applications such as human health monitoring, robotic skin, and intelligent electronic products. In this work, we introduced and demonstrated a design of highly sensitive, self-powered, and wearable electronic skin based on a pressure-sensitive nanofiber woven fabric sensor fabricated by weaving PVDF electrospun yarns of nanofibers coated with PEDOT. Particularly, the nanofiber woven fabric sensor with multi-leveled hierarchical structure, which significantly induced the change in contact area under ultra-low load, showed combined superiority of high sensitivity (18.376 kPa−1, at ~100 Pa), wide pressure range (0.002–10 kPa), fast response time (15 ms) and better durability (7500 cycles). More importantly, an open-circuit voltage signal of the PPNWF pressure sensor was obtained through applying periodic pressure of 10 kPa, and the output open-circuit voltage exhibited a distinct switching behavior to the applied pressure, indicating the wearable nanofiber woven fabric sensor could be self-powered under an applied pressure. Furthermore, we demonstrated the potential application of this wearable nanofiber woven fabric sensor in electronic skin for health monitoring, human motion detection, and muscle tremor detection.
Highlights
Human skin, a natural multi-functional sensor, can transmit mechanical stimulation, temperature, humidity, and other information received from the surrounding objects to the central nervous system, and the received information is recognized by the human brain during the neural transmission system through the inter-transformation between physical signals and chemical signals[1,2]
Considering the above-mentioned problems, in the present study, we developed a design of highly sensitive, self-powered, and wearable electronic skin based on a pressure-sensitive nanofiber woven fabric sensor fabricated by weaving polyvinylidene fluoride (PVDF) electrospun yarns of nanofibers coated with poly(3, 4-ethylenedioxythiophene) (PEDOT)
It should be noted that the stress intensity of PEDOT@PVDF nanofibers yarns is close to that of commercial viscose filament, and were able to meet the requirement of weaving (Figure S3)
Summary
A perfect weaving structure was observed in typical scanning electron microscopy (SEM) images of the PEDOT@PVDF nanofiber fabric, which the warp and weft yarns are crisscross assembled and interlaced with each other in an over-and-under fashion (Fig. 1c). The PEDOT-coated PVDF filament woven fabric sensor showed a lower sensitivity of 4.146 kPa−1 at a pressure of ~100 Pa. We attributed the enhanced sensitivity of the PPNWF pressure sensor to the drastic change in contact area under low pressure, which is derived from its multi-level hierarchical structure (Fig. 4d). The piezoelectric performance was recorded by using a voltage amplifier and a dynamic signal test and analysis system (DH5922N)
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have