Abstract

A novel two-photon initiator, 4,4′-bis[4-(di-n-butylamino)styryl]-benzene with the side-group methyl (Me) (abbreviated as Chromophore 1), was synthesized in comparison with the chromophore with the side group methoxy (MeO) (abbreviated as Chromophore 2). Femtosecond laser-induced fluorescence intensity was used to evaluate two-photon absorption (TPA) cross section, δ, by means of a charge-coupled device, USB-2000 (abbreviated as CCD). Results showed that changing the side group from Me to MeO led to a significant red-shift of the two-photon absorption ( 2 λ max). However, the microstructures obtained by two-photon-induced polymerization (TPIP) demonstrated that the sensitivities of Chromophore 1 increased despite a two-fold decrease in the two-photon cross section δ max, relative to Chromophore 2. Correlated with the appearance that the long-lived charge transfer emission of the chromophore in the monomer bulk, we suggest that the intramolecular charge transfer (intra-CT) takes place within the excited dye. Then intermolecular charge transfer was successive as a result of the formation of an exciplex between the dye and the monomer. The Me group was favorable for the intra-CT, relative to MeO, which contributed to the enhancement of the sensitivity of TPIP.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call