Abstract

AbstractOcean wave energy represents a widely distributed and abundant clean, renewable energy source. However, its efficient harnessing remains a challenge. In this study, a triboelectric‐electromagnetic hybrid generator of a Ferris‐wheel‐like structure (FWS‐TEHG) with magnetic repulsion assistance is proposed to effectively enhance the collection of low‐frequency and low‐amplitude water wave energy. The Ferris‐wheel shell and the internal rotator are designed with a phase difference to heighten the swing amplitude, while the introduction of magnetic repulsion augments the motion frequency. The device has demonstrated excellent performance in low‐frequency conditions, from laboratory to ocean wave tests. Operating at a frequency of 0.5 Hz and a swing angle of 12° on a six‐freedom platform, it lights up 64 LEDs with a power rating of 2 W. Triggered by simulated water waves with a frequency of 1 Hz, the FWS‐TEHG charges a 19 mF capacitor at an average charging rate of ≈0.58 W h−1, powering a water‐level alarm. In oceanic conditions, the FWS‐TEHG effectively harvests energy from water waves by exhibiting an output frequency approximately four to five times higher than that of the primary frequency of ocean waves, thus enabling it to power electrical devices such as temperature–humidity meters efficiently. This study provides a valuable reference for advancing the practical application of nanogenerators in natural ocean environments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.