Abstract

Recently, some new nanobiosensors using different nanoparticles or microarray systems for detection of mycotoxins have been designed . However, rapid, sensitive and early detection of aflatoxicosis would be very helpful to distinguish high-risk persons. We report a highly sensitive competitive immunoassay using magnetic/silica core shell as a signal intensifier for the determination of aflatoxin B1 using fluorescence resonance energy transfer (FRET) from Cd/Te quantum dots (antiaflatoxin B1 antibody immobilized on the surface of Cd/Te quantum dots) to Rhodamine 123 (Rho 123-labeled aflatoxin B1 bound to albumin). The specific immune-reaction between the anti-aflatoxin B1 antibody on the QDs and the labeledaflatoxin B1 brings the Rho 123 fluorophore (acting as the acceptor) and the QDs (acting as the donor) in close spatial proximity and causes FRET to occur upon photo-excitation of the QDs. Using magnetic/silica core shell to intensify the obtained signal is the novelty of this study. Cd/Te QDs were synthesized by the simultaneous reduction of cadmium chloride and tellurium in the presence of sodium borohydride under nitrogen atmosphere. Magnetic nanoparticles were synthesized using FeSO4 and FeCl3 (1:2 molar ratio) and ammonia as an oxidizing agent under nitrogen atmosphere. The prepared magnetic nanoparticles shelled by silica using tetraethoxysilane in the presence of ammonia. Nanoparticles synthesis and monodispersity confirmed by TEM. Immobilization of Cd/Te QDs to antibodies and labeling of aflatoxin B1-albumin by Rho 123 were performed by EDC/NHS reaction in reaction mixture buffer, pH 6, at room temperature. By using the magnetic/silica core shell sensitivity of the system changed from 2×10-11 in our previous study to 2×10-12 in this work. The feasibility of the method established by the detection of aflatoxin B1 in spiked human serum. There is a linear relationship between the decreased fluorescence intensity of Rho 123 with increasing concentration of aflatoxin B1 in spiked samples, over the range of 0.01-0.06 μmol.mL-1. This homogeneous competitive detection scheme is simple, rapid and efficient, and does not require multiple separation steps and excessive washing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.