Abstract

Traditional enzyme-linked immunosorbent assay (ELISA) suffers from the limitations of relatively low sensitivity and stability, and enzyme-labelled antibodies are hard to be prepared and purified. Based on a nanozyme, an aptamer and Fe3O4 magnetic nanoparticles (MNP), a nanozyme and aptamer-based immunosorbent assay (NAISA) was developed for aflatoxin B1 (AFB1) detection with simpler operation and separation. In this work, mesoporous SiO2/Au-Pt (m-SAP) were prepared to act as signal labels, which showed high catalase-like activity and was denoted as nanozyme. Aptamer was adopted to specifically recognize with AFB1, and MNP facilitated to realize magnetic separation. To verify the performance of NAISA, traditional ELISA (t-ELISA) and enhanced ELISA (e-ELISA) using MNP and m-SAP nanozyme were applied in AFB1 detection. The NAISA method showed the lowest limit of detection (LOD) with 5 pg mL−1 (n = 3, ±4.2 %), 600 and 12-fold lower than that of t-ELISA (3 ng mL−1) and e-ELISA (0.06 ng mL−1), respectively. In the interference tests, AFB1 can be identified among six different interfering substances. The NAISA method, thus, can be of great importance as it allows selective and sensitive AFB1 detection, while providing the simplicity of use and need for screening hazardous materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.