Abstract
A simple and highly sensitive method was developed for the extractive-spectrophotometric determination of palladium with benzilidithiosemicarbazone. The metal ion formed a reddish brown complex with benzildithiosemicarbazone in a potassium chloride-hydrochloric acid buffer of pH 2.5, which was easily extractable into methyl isobutyl ketone. The 1:1 complex showed the maximum absorbance at 395 nm with a Beer's law range of 0.25-3.5 ppm. The molar absorptivity and Sandell's sensitivity were found to be 3.018 x 10(4) dm3 mol(-1) cm(-1) and 0.0035 microg cm(-2), respectively. The correlation coefficient of the Pd(II)-BDTSC complex was 0.998, which indicated an excellent linearity between the two variables. The repeatability of the method was checked by finding the relative standard deviation (RSD) (n = 10), which was 0.46%. The instability constant of the complex calculated from Edmond and Birnbaum's method was 2.41 x 10(-5), that of Asmus' method is 2.53 x 10(-5) at room temperature. The interfering effects of various cations and anions were studied. The proposed method was successfully applied to the determination of palladium(II) in synthetic mixtures and hydrogenation catalysts. The validity of the method was tested by comparing the results with those obtained using an atomic absorption spectrophotometer.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have