Abstract

Soluble growth stimulation expressed gene 2 (sST2) is a new generation biomarker in the diagnosis and prognosis of heart failure (HF). Here, the sST2-specific aptamers were selected from a random ssDNA library with the full length of 88 nucleotides (nt) via target-immobilized magnetic beads (MB)-based systematic evolution of ligands by exponential enrichment (SELEX) technology. After eight rounds of selection, six aptamers with the most enrichment were selected. Among, the aptamer L1 showed the high-affinity binding to sST2 with the lowest Kd value (77.3 ± 0.05 nM), which was chosen as the optimal aptamer for further molecular docking. Then, the aptamer L1 was used to construct a graphene oxide (GO) - based fluorescence resonance energy transfer (FRET) biosensor for sST2, which exhibits a linear detection range of 0.1–100 μg/ml and a detection limit of 3.7 ng/ml. The aptasensor was applied to detect sST2 in real samples, with a good correlation and agreement with the traditional enzyme-linked immunosorbent assay (ELISA) when quantitative analyzing the sST2 concentration in serum samples from HF patients. The results show that not only an efficient strategy for screening the practicable aptamer, but also a rapid and sensitive detection platform for sST2 were established.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.