Abstract

The detection and monitoring of toxic and harmful gases play a vital role in environmental protection, human health, and industrial and agricultural production. However, it is still challenging to develop gas sensors for the detection of toxic and harmful gases with high sensitivity, good recovery and excellent selectivity. In this study, WO3/Al2O3/graphite composite materials were used for an MEMS 2-CEES gas sensor (dichlorodiethyl sulfide simulation), and the corresponding sensing properties were explored. The experimental results show that when the working temperature is 340 °C, the response of the sensor to 2-CEES gas with a concentration of 5.70 ppm is 69%, the response time is 5 s and the recovery time is 42 s. The sensor also has the advantages of long-term stability and high selectivity. Furthermore, the MEMS gas sensor array based on WO3/Al2O3/graphite composite materials has been achieved and also exhibits excellent sensing performance. Overall, this study provides a strategy for realizing high-performance dichlorodiethyl sulfide gas sensors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call