Abstract
A versatile organic room-temperature phosphorescence (RTP)-based “turn on” biosensor platform has been devised with high sensitivity by combining oxygen-sensitive lipid-polymer hybrid RTP nanoparticles with a signal-amplifying enzymatic oxygen scavenging reaction in aqueous solutions. When integrated with a sandwich-DNA hybridization assay on 96-well plates, our phosphorimetric sensor demonstrates sequence-specific detection of a cell-free cancer biomarker, a TP53 gene fragment, with a sub-picomolar (0.5 p.m.) detection limit. This assay is compatible with detecting cell-free nucleic acids in human urine samples. Simply by re-programming the detection probe, our unique methodology can be adapted to a broad range of biosensor applications for biomarkers of great clinical importance but difficult to detect due to their low abundance in vivo.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.