Abstract

Extracellular vesicle (EV) cargos with regular fluctuations hold the potential for providing chemical predictors toward clinical diagnosis and prognosis. A plasma sample is one of the most important sources of circulating EVs, yet the technical barrier and cost consumption in plasma-EV isolation still limit its application in disease diagnosis and biomarker discovery. Here, we introduced an easy-to-use strategy that allows selectively purifying small EVs (sEVs) from human plasma and detecting their metabolic alternations. Fe3O4@TiO2 microbeads with a rough island-shaped surface have proven the capability of performing efficient and reversible sEV capture owing to the phospholipid affinity, enhanced binding sites, and size-exclusion-like effect of the rough TiO2 shell. The proposed system can also shorten the separation procedure from hours to 20 min when compared with the ultracentrifugation method and yield approximately 108 sEV particles from 100 μL of plasma. Metabolome variations of sEVs among progressive diabetic retinopathy subjects were finally studied, observing a cluster of metabolites with elevated levels and suggesting potential roles of these sEV chemicals in diabetic retinopathy onset and progression. Such a scalable and flexible EV capture system can be seen as an effective analytical tool for facilitating plasma-based liquid biopsies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call