Abstract

Various types of Ti-containing zeolites, i.e., Ti-MWW, TS-1, Ti-MOR, and Ti-BEA, have been evaluated as candidates for the liquid-phase oxidation of cyclohexane using t-butyl hydroperoxide (TBHP, 7–8 wt %) as model oxidant. Ti-MWW zeolite displayed the highest activity for cyclohexanol and cyclohexanone (KA oil) with an overall selectivity higher than 90% at 80 °C, making this catalyst a candidate of choice for industrial KA oil production by deperoxidation of cyclohexyl hydroperoxide. The effect of the reaction temperature, reaction time, catalyst amount, and catalyst stability on Ti-MWW was surveyed in detail. The Ti-MWW catalyst showed a stable performance and could be recycled at least four times without detectable Ti leaching and loss of structural stability. The active sites for cyclohexane oxidation appeared to be located near external 12-ring cups in the Ti-MWW framework as suggested by a series of position-selective poisoning tests with tripropyl- and triphenylamine, impelling cyclohexane diffusi...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call