Abstract

Herein, a novel approach used to enhance the conversion of electrochemical CO2 reduction (CO2R), as well as the capacity to produce C2 products, is reported. A copper oxide catalyst supported by graphite phase carbon nitride (CuO/g-C3N4) was prepared using a one-step hydrothermal method and exhibited a better performance than pure copper oxide nanosheets (CuO NSs) and spherical copper oxide particles (CuO SPs). The Faradaic efficiency reached 64.7% for all the C2 products, specifically 37.0% for C2H4, with a good durability at -1.0 V vs. RHE. The results suggest that the interaction between CuO and the two-dimensional g-C3N4 planes promoted CO2 adsorption, its activation and C-C coupling. This work offers a practical method that can be used to enhance the activity of electrochemical CO2R and the selectivity of C2 products through synergistic effects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.