Abstract

For the first time, N-doped carbon materials with 3D porous-layered skeleton structure was synthesized through a one-step co-pyrolysis method, which was fabricated by co-pyrolysis of natural corn starch and melamine using metal catalysts (Ni (II) and Mn (II)). The 3D-NC possessed a heterogeneously meso-macroporous surface with a hierarchically connected sheet structure inside. Batch adsorption experiments suggested that highly selective adsorption of Hg (II) by the 3D-NC could be completed within 90min and had maximum adsorption capacities as high as 403.24mg/g at 293K, pH = 5. The adsorption mechanism for Hg (II) was carefully evaluated and followed the physical adsorption, electrostatic attraction, chelation, and ion exchange. Besides, thermodynamic study demonstrated that the Hg (II) adsorption procedure was spontaneous, endothermic, and randomness. More importantly, the 3D-NC could be regenerated and recovered well after adsorption-desorption cycles, showing a promising prospect in the remediation of Hg (II)-contaminated wastewater.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call