Abstract
The practical implementation of aqueous Zn-ion batteries presents formidable hurdles, including uncontrolled dendrite growth, water-induced side reactions, suboptimal Zn metal utilization, and intricate Zn anode manufacturing. Here, large-scale construction of a highly oriented ZnO(002) lattice plane on Zn anode (ZnO(002)@Zn) with thermodynamic inertia and kinetic zincophilicity is designed to address such problems. Both theoretical calculations and experiment results elucidate that the ZnO(002)@Zn possesses high Zn chemical affinity, hydrogen evolution reaction suppression, and dendrite-free deposition ability due to the abundant lattice oxygen species in ZnO(002) and its low lattice mismatch with Zn(002). These features synergistically promote ion transport and enable homogeneous Zn deposition. Consequently, the ZnO(002)@Zn anode displays a stable and prolonged cycling lifespan exceeding 500h even under a larger depth of discharge (85.6%) and realizes an impressive average Coulombic efficiency of 99.7%. Moreover, its efficacy is also evident in V2O5-cathode coin cells and pouch cells with not only high discharge capacity but also exceptional cycling stability. This integrated approach presents a promising avenue for addressing the challenges associated with Zn metal anodes, thereby advancing the prospects of aqueous Zn-ion battery technologies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.