Abstract
AbstractZn dendrites growth and poor cycling stability are significant challenges for rechargeable aqueous Zn batteries. Zn metal deposition‐dissolution in aqueous electrolytes is typically determined by Zn anode–electrolyte interfaces. In this work, the role of a long‐chain polyethylene oxide (PEO) polymer as a multifunctional electrolyte additive in stabilizing Zn metal anodes is reported. PEO molecules suppress Zn2+ ion transfer kinetics and regulate Zn2+ ion concentration in the vicinity of Zn anodes through interactions between ether groups of PEO and Zn2+ ions. The suppressed Zn2+ ion transfer kinetics and homogeneous Zn2+ ion distribution at the interface promotes dendrite‐free homogeneous Zn deposition. In addition, electrochemically inert PEO molecules adsorbed onto Zn anodes can protect the anode surfaces from H2 generation and, thereby, enhance their electrochemical stability. Stable cycling over 3000 h and high reversibility (Coulombic efficiency > 99.5%) of Zn anodes is demonstrated in 1 m ZnSO4 electrolyte with 0.5 wt% PEO. This finding provides helpful insights into the mechanism of Zn metal anodes stabilization by low‐cost multifunctional polymer electrolyte additives that stabilize interfacial reactions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.