Abstract

An in situ tip preparation procedure compatible with ultra-low temperature and high magnetic field scanning tunneling microscopes is presented. This procedure does not require additional preparation techniques such as thermal annealing or ion milling. It relies on the local electric-field-induced deposition of material from the tip onto the studied surface. Subsequently, repeated indentations are performed onto the sputtered cluster to mechanically anneal the tip apex and thus to ensure the stability of the tip. The efficiency of this method is confirmed by comparing the topography and spectroscopy data acquired with either unprepared or in situ prepared tips on epitaxial graphene grown on Ru (0001). We demonstrate that the use of in situ prepared tips increases the stability of the scanning tunneling images and the reproducibility of the spectroscopic measurements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.