Abstract

A porous SnO2 nanosheets/TiO2/CdS quantum dots (SnO2 NSs/TiO2/CdS QDs) sandwich structure has been designed and fabricated as a “host-guest” photoanode for efficient solar water splitting applications. In this novel photoanode design, the highly porous SnO2 NSs serve as the host skeleton for efficient electron collection, while CdS QDs serve as efficient visible light absorbers. A thin interlayer of TiO2 is introduced for band alignment and reduction of charge recombination. Enhanced photoelectrochemical performance of the as fabricated photoanode is observed with introduction of the TiO2 interlayer. The optimized host-guest SnO2 NSs/TiO2/CdS QDs photoanode shows a photocurrent density as high as 4.7 mA cm−2 at 0 V versus Ag/AgCl, which is 7 times higher than that of the SnO2 NSs/TiO2 reference photoanode (0.7 mA cm−2). Furthermore, it also shows lower charge recombination rate compared to the SnO2 NSs/CdS QDs reference photoanode. Due to the high porosity and transparency of the as developed SnO2 NSs arrays host, it has great potential in various applications, such as solar energy conversion and energy storage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.