Abstract

Metal–organic frameworks (MOFs) possess exciting properties, which can be tailored by rational material design approaches. Integration of MOFs in functional nano- and mesoscale systems require selective crystallite positioning and thin-film growth techniques. Stepwise layer-by-layer liquid-phase epitaxy (LPE) emerged as one of the methods of choice to fabricate MOF@substrate systems. The layer-by-layer approach of LPE allows a precise control over the film thickness and crystallite orientation. However, these advantages were mostly observed in cases of tetra-connected dinuclear paddle-wheel MOFs and Hoffmann-type MOFs. Higher connected MOFs (consisting of nodes with 8–12 binding sites), such as the Zr-oxo cluster based families, are notoriously hard to deposit in an acceptable quality by the stepwise liquid-phase process. Herein, we report the use of coordination modulation (CM) to assist and enhance the LPE growth of UiO-66, Zr6O4(OH)4(bdc)6 (bdc2– = 1,4-benzene-dicarboxylate) films. Highly porous and cr...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.