Abstract

Abstract Ultralight ceramics with striking mechanical properties and improved pore connectivity could have wide applications in areas ranging from catalyst support to hot gas filtration. However, creating such materials has proven to be a challenging target. This work demonstrated a novel methodology to prepare porous MgAl2O4 ceramics by calcining gelled MgO–Al2O3–SiO2 particle-stabilized foams. The striking green strength of dried foams can be achieved as a consequence of MgO hydration and subsequent formation of gelled Mg(OH)2 and MgO–SiO2–H2O skeleton. The decomposition of colloidal substance at elevated temperature resulted in the formation of small pores on the cell wall, thus forming the hierarchical porous architecture and improving the pore connectivity. The highly porous MgAl2O4 ceramics fired at 1600°C possessed the integrated properties of ultrahigh porosity (87.0%), improved pore connectivity and satisfactory compressive strength (7.93 MPa), showing great potential to be used in multiple industrial fields.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call