Abstract

Porous ceramic materials have been broadly applied in various fields due to their multifunctional properties. Optimization of their microstructural characteristics, such as pore morphology, total porosity, and pore size distribution, which determine various properties of the final products, is crucial to improve their performances and thus extend their applications. In this study, single-phase porous MgAl2O4 materials were fabricated by direct foaming–gelcasting. With an increase in the foam volume from 260 to 350 mL, the total porosity and pore size of the porous ceramic increased, and its microstructure varied from mostly closed cells to open cells containing interconnected large pores (40–155 μm) and small circular windows (10–40 μm) in the ceramic skeleton. The total porosity could be tailored from 84.91% to 76.08% by modulating the sintering temperature and foam volume and the corresponding compressive strengths were in the range of 2.8–15.0 MPa. The compressive strength exhibited a power-law relationship with the relative density with indices of approximately 3.409 and 3.439, respectively. Porous MgAl2O4 ceramics exhibited low dielectric constants in the range of 1.618–1.910 at room temperature, which are well matched with theoretical calculations on account of a modified Bruggeman model. The porous MgAl2O4 ceramics with good mechanical and dielectric properties controlled easily by various sintering temperatures and foam volumes are promising for practical applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call