Abstract

A high quality of activated-carbon electrode materials is of great importance for improving the electrochemical performance of desalination in membrane capacitive deionization. In this study, porous activated carbon was prepared by pyrolytic carbonization and chemical activation of lignocellulosic loofa sponge (Luffa cylindrica, LS) to act as a carbonaceous electrode. After activation, a hierarchically porous structure formed, characterized by the generation of micro-/mesopores on the channel walls. The total specific surface area and pore volume of the activated carbon material rose as the alkali/char ratio increased. The LS-based carbon electrode LSCK14, referring to the activation product produced with a KOH/char ratio of 4, displayed excellent electrochemical behavior, characterized by a remarkable specific capacitance of 93.0 F g−1 at 5 mV s−1 in 1 M NaCl solution, as well as extraordinary reversibility for capacitive charge storage. Moreover, the electrosorption capacity was investigated in batch-mode membrane capacitive deionization at 1.0 V while treating a 10 mM NaCl electrolyte. As demonstrated, the LSCK14 activated carbon electrode presented a superior electrosorption capacity of 22.5 mg g−1. The improved capacitor characteristics and high electrosorptive performance of this material can be attributed to its unique porous characteristics (high surface area, micrometer-scale channels and both meso- and micropores). Consequently, activated carbons derived from resource-recovered LS, which combine a multi-channeled structure, mesopores and micropores, were demonstrated to be a promising electrode material for electrochemical water desalination.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call