Abstract

Scanning force microscopy (AFM) and high-resolution transmission electron microscopy (HRTEM) have been used to investigate the complex topography evolution of Si surfaces during low-energy ion beam erosion. Depending on ion-beam parameters, a variety of different topographies can develop on the surface. At oblique ion-incidence angles, nanodots are formed for ion energies ⩾300eV upon sample rotation. Properly chosen parameters of the broad-beam ion source result in dots possessing a very high degree of lateral ordering with a mean dot size λ∼30nm. Both, degree of ordering and size homogeneity of these nanostructures increases with erosion time leading to the most ordered self-organized patterns on Si surfaces reported thus far.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.