Abstract

Designing Pt-based nanoparticle (NP) catalysts is of great interest for the lowering of Pt usage and the enhancement of catalytic activity on the proton-exchange membrane fuel cells (PEMFCs). However, it is still challenging to develop well-arrayed catalyst NPs on supports over multiple-length scales. Herein, we presented a facile strategy of producing well-ordered Pt-based NPs toward oxygen reduction reaction (ORR) catalysts assisted by the self-assembly of block copolymers. In contrast to the conventional Pt/C ORR catalysts with a random dispersion on carbon, the as-prepared Pt, PtCo, and PtCo@Pt NPs in our work were hexagonally arranged with a uniform quasi-spherical shape and ordered distribution. The systematic study related to their ORR activities revealed that the PtCo@Pt core-shell NP arrays were more active and more durable than PtCo, Pt, and the commercial Pt/C catalyst. In the rotating-disk electrode test, a half-wave potential (E1/2) of 0.86 V versus RHE and a 4-e ORR mechanism were found for PtCo@Pt. Single-cell performance showed that the current density and the peak power density of PtCo@Pt achieved 0.86 A/cm2@0.7 V and 1.05 W/cm2, respectively, with a Pt loading of ∼0.15 mg/cm2 on the cathode. Also, they held 81.4 and 82.9% retention, respectively, after the durability test in the single-cell test. Density functional theory calculation results revealed that PtCo@Pt NPs had a lower d-band center and a weaker oxygen binding energy compared to Pt and PtCo, which contributed to the enhancement of the ORR activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call