Abstract

Nanocellular polymer foams have shown significant potential for industrial applications because of their superior thermal, mechanical, and optical properties. Some of these properties may be further improved by enhancing the ordering of cell structures. However, it is challenging for conventional foaming methods to control both the cell size and ordering at the nanoscale. Here, we show an innovative method to produce highly ordered nanocellular polymer foams by incorporating the self-assembly of an asymmetric diblock copolymer with the UV-induced chemical foaming technique. The minor domains are designed to generate a gaseous compound from the partial cleavage of the functional group. It is demonstrated that the gas-producing reaction can be accelerated at a temperature low enough to prevent melting of the whole self-assembled template, by mixing a small amount of photoacid generator into the copolymer, followed by UV irradiation. The result is the production of polymer foams with the nanoscale cells highly aligned to the self-assembled domains.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.