Abstract

AbstractElectrocatalysts are crucial to drive the electrochemical carbon dioxide reduction reaction (CO2RR) which lower the energy barrier, tune the intricate reaction pathways and suppress competitive side‐reaction. Beyond the efficient active sites and advantageous local environment, a rapid mass transfer ability is also crucial for the catalyst design. However, it is rare that research has been done to investigate in detail the mass transfer process in CO2RR, and expose the underlying relationship between mass transfer and final performance. Here, a single‐atom Fe‐N‐C catalyst is shown with a highly ordered porous substrate containing hierarchical micropores, mesopores, and macropores. Such a delicate porous structure significantly facilitates the mass transfer process toward the isolated Fe sites, achieving excellent CO2RR performance, especially in the limited mass transfer region in a H‐cell with a maximum CO partial current density of ‐19 mA cm−2. Operando electrochemical impedance spectroscopy and relevant distributed relaxation times analysis reveal the rapidly decreased mass transfer resistance with the increase of reduction potential. The Lattice Boltzmann method with Discrete Element method (LBM‐DEM) simulations are further performed to exhibit the origin of enhanced CO2RR performance from the facilitated gas diffusion process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.