Abstract

Optical coherence tomography is a technology which supplies the tomographic image using the optical interference. It uses the 1.31 μm wavelength for dental applications. Resolution problems of such a technology can be improved by using supercontinuum light sources as low coherent broadband light is achievable from optical supercontinuum. Photonic crystal fibers have the ability to generate the supercontinuum light even with moderate input power levels. Only thing to consider is to ensure zero or nearly zero dispersion of such fibers at the target 1.31μm wavelength. This paper presents design of a high nonlinear photonic crystal fiber with near-zero dispersion around 1.31μm wavelength based on the finite difference method. Robustness of the design is confirmed numerically by generating wideband supercontinuum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.