Abstract

This paper reveals special design features of the proposed highly nonlinear circular-lattice-silicon-core and silica-doped-with-fluorine (1%) cladding-composite photonic crystal fiber (PCF) in the Mid-infrared region of the spectrum. A region of small negative group velocity dispersion (GVD), managed higher order dispersions (HODs), and unique nonlinearity of silicon have been used to demonstrate a supercontinuum broadening from 1500 nm to 4700 nm with consumption of low input power of 400 W over short fiber distances. It will be also shown that the fiber’s high-level engineered structure finally results in a simple manufacturing process compared with other designed nano-sized silicon PCFs. The designed fiber could have massive potential in gas sensing, soliton effect pulse compression, spectroscopy, material processing, etc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.