Abstract

This paper presents a novel design of a highly-miniaturized dual-mode bandpass filter (BPF) employing a quarter-mode substrate integrated waveguide (QMSIW). The QMSIW resonator is based on a square cavity with metallic vias along two sides, and open-ended edges at the remaining sides that contain orthogonal feed lines. An open slot is introduced along the two sides of the square cavity with metallic vias to form a magnetic wall. A single metallic via is assigned at the corner of the two open-edged sides to form an electrical wall, which produces different resonances. By loading a slot diagonally, the mode frequencies can be controlled independently, which allows us to realize a second-order BPF. The detailed design steps and a flowchart explaining the filter’s topology evolution are presented. The eigen-mode analysis, field distributions, coupling matrix, and full-wave simulation of the proposed QMSIW filter topology are used to determine the filter’s operating principle. To verify the proposed theory, a second-order BPF is realized, fabricated, and demonstrated experimentally. The BPF prototype exhibits excellent performance such as a small footprint of <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$0.019\lambda ^{2}$ </tex-math></inline-formula> , a wide passband of 34.8-percent, low insertion loss of 0.43 dB, and a wide stopband of <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$3.36f_{0}$ </tex-math></inline-formula> with a rejection level greater than 20 dB. Excellent consistency is found between the EM-simulated and measured responses of the device.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call