Abstract

Dislocation arrays embedded in low-angle grain-boundaries have emerged as an effective structural defect for a dramatic improvement of thermoelectric performance by reducing thermal conductivity [1]. A transient liquid-flow assisted compacting process has been employed for p-type Bi0.5Sb1.5Te3 material to generate the dislocation arrays at grain-boundaries. The details of underlying formation mechanism are crucial for the feasibility of the process on other state-of-the-art thermoelectric materials but have not been well understood. Here, we report the direct observation of dislocation formation process at grain-boundaries of Sb2Te3 system as a proof-of-concept material. We found that the formation of homointerface between Te-terminated Sb2Te3 matrix phase and Te liquid atomic-layer of secondary phase is a prerequisite factor to achieve the low-energy liquid-solid homointerface at compacting elevated temperature. We further demonstrate from the successful observations of atomic structure in the intermediate state of the compacted pellet that the high self-diffusion rate of Te atoms at the liquid-solid homointerface facilitates an effective grain rearrangement, generating low-energy grain-boundaries embedded with dense dislocation arrays. These results pave the way to improve thermoelectric performance of various materials where dislocation arrays are generated by transient liquid-flow assisted compacting process using precursors with an interface constructed with the same types of atoms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.