Abstract
New materials and fabrication technologies have significantly boosted the development of lab-on-a-chip technologies and functionalities. In this work, we developed a highly flexible elastomer microfluidic chip with a microchannel with a minimum width of ∼5 μm manufactured by imprinting onto an SU-8 template. We found that the deformation induced in the microstructures by manual stretching of the chip is higher than that for the chip itself, which we attribute to the stress concentration of microstructures. Here, we demonstrate that the elastomer enables the manipulation of single cells, such as dynamic trapping-releasing operations, by simply stretching and releasing the elastomer chip.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.