Abstract

We utilized a modified reverse-microemulsion method to develop highly emissive and photostable zero-dimensional (0D) Cs4Pb(Br1-xIx)6 perovskite nanocrystals (PNCs). We employed single-particle photoluminescence (PL) spectroscopy to explore blinking statistics and demonstrate single-photon emission from individual PNCs. Low-temperature blinking and photon correlation studies revealed a transition from single- to multiphoton emission with progressively longer "delayed" PL components, reaching ∼70 ns at room temperature and representing a distinctive behavior to previously known iodide PNCs. Such thermally activated PL emission is explained by the existence of defect-related "reservoir" states, feeding back into the PNC's emissive state and providing multiple photons within a single excitation cycle. This work establishes a new member in the 0D class of perovskite materials, studies its photophysical properties, and reveals its potential for future optoelectronic applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call