Abstract
In this study, we demonstrate the fabrication of highly efficient white organic light-emitting diodes (WOLEDs) with a p–i–n tandem structure using lithium (Li)-doped tris(8-hydroxyquinoline) aluminum (Alq3)/molybdenum oxide (MoOx)-doped 4,4',4''-tris[2-naphthyl(phenyl)amino] triphenylamine (2-TNATA) as an effective interconnecting layer (ICL). The tandem device exhibited a luminance of 3800 cd/m2, a luminous efficiency of 18.8 cd/A, a power efficiency of 5.48 lm/W, an external quantum efficiency of 6.5%, and the Commission Internationale d'Eclairage (CIE) coordinates of (x=0.312, y=0.396) at 20 mA/cm2. The electroluminescence color of this p–i–n tandem device nearly did not change significantly with driving voltage variation and viewing angle. The various interfaces of ICL in such a tandem device were studied using a photovoltaic setup and were used to elucidate the mechanisms of the tandem devices.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have