Abstract
All-Van der Waals (vdW)-material-based heterostructures with atomically sharp interfaces offer a versatile platform for high-performing spintronic functionalities at room temperature. One of the key components is vdW topological insulators (TIs), which can produce a strong spin-orbit-torque (SOT) through the spin-momentum locking of their topological surface state (TSS). However, the relatively low conductance of the TSS introduces a current leakage problem through the bulk states of the TI or the adjacent ferromagnetic metal layers, reducing the interfacial charge-to-spin conversion efficiency (qICS). Here, a vdW heterostructure is used consisting of atomically-thin layers of a bulk-insulating TI Sn-doped Bi1.1Sb0.9Te2S1 and a room-temperature ferromagnet Fe3GaTe2, to enhance the relative current ratio on the TSS up to ≈20%. The resulting qICS reaches ≈1.65 nm-1 and the critical current density Jc ≈0.9×106Acm-2 at 300 K, surpassing the performance of TI-based and heavy-metal-based SOT devices. These findings demonstrate that an all-vdW heterostructure with thickness optimization offers a promising platform for efficient current-controlled magnetization switching at room temperature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Advanced science (Weinheim, Baden-Wurttemberg, Germany)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.