Abstract

Near-field radiative thermal rectifiers (NFRTRs) enabling directional heat transport hold great promise for various applications, including thermal logic computing, thermal management, and energy conversion. Current NFRTR designs rely on dissimilar terminal materials with high contrasts in their temperature-dependent dielectric properties, which in turn hinders the spectral match for radiative heat transfer and thus limits the device's efficiency. Herein, this dilemma is solved by designing heterostructures where a pair of polaritonic layers are separately stacked on a thermally-expanding layer and a rigid substrate, spaced by a vacuum gap. In this scheme, the symmetric polaritonic layers can provide stable near-field radiative channels for heat transfer, while the thermally-expanding layer can modulate the gap size with flipped temperature bias to allow high contrasts in heat flux. In exemplified implementations, the hBN-based design has achieved a record-high thermal rectification factor (TRF, ∼104) even under small thermal gradients (∼20 K), which can be further boosted by polaritonic hybridizations in the graphene/hBN-based design. This study paves the way to design novel NFRTRs with 2D materials, thus providing enriched polaritons to realize higher TRFs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.