Abstract

Sorption-based atmospheric water harvesting (SAWH) as an appealing way to address global water shortage can obtain water from air anytime and anywhere. However, achieving liter-scale water yield by portable device for daily demand is still a challenge. Here, a 7.5-L portable atmospheric water harvester with optimized structure design was proposed. By adopting central heating and radiation heat shielding strategy to minimize heat losses during desorption process and utilizing a batch-process operation model, the device presented superior productivity of 1150 gwater/day with low energy consumption of 1.7 kWh/L under field test. This is the first demonstration to promote daily water yield of small-size SAWH device to an order of 1000 g with lower energy consumption compared with existing active SAWH studies. Optimized heat and mass transfer within compact structure enabled the water yield per unit volume and weight of the device reaching milestone values of 152.5 gwater/Ldevice/day and 199.4 gwater/kgdevice/day. This remarkable performance motivated the feasibility of distributed freshwater production and pushed SAWH technology one step closer to the practical applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call