Abstract

Wide-bandgap metal halide perovskites have demonstrated promise in multijunction photovoltaic (PV) cells. However, photoinduced phase segregation and the resultant low open-circuit voltage (Voc) have greatly limited the PV performance of perovskite-based multijunction devices. Here, a alloying strategy is reported to achieve uniform distribution of triple cations and halides in wide-bandgap perovskites by doping Rb+ and Cl- with small ionic radii, which effectively suppresses halide phase segregation while promoting the homogenization of surface potential. Based on this strategy, a Voc of 1.33V is obtained from single-junction perovskite solar cells, and a VOC approaching 3.0V and a power conversion efficiency of 25.0% (obtained from reverse scan direction, certified efficiency: 24.19%) on an 1.04 cm2 photoactive area can be achieved in a perovskite/perovskite/c-Si triple-junction tandem cell, where the certification efficiency is by far the greatest performance of perovskite-based triple-junction tandem solar cells. This work overcomes the performance deadlock of perovskite-based triple-junction tandem cells by setting a materials-by-design paradigm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call