Abstract

In this paper, we report the development of an environmental friendly process to decontaminate uranium-containing ores and nuclear wastes by using non-fluorinated ionic liquids (ILs). The main advantages of this extraction process are the absence of any organic diluent and extra extraction agents added to the organic phase. Moreover, the process is cost-effective and maybe applied as a sustainable hydrometallurgical method to recover uranium. The distribution ratio (DU) and the extraction efficiency (%E) of uranium(VI) (UO22+) were found to be dependent on the acidity of the aqueous phase, the extraction time, the alkyl chain length in the ILs, the concentration of the aqueous feed and molar quantity of ILs. The DU value is higher than 600 and the %E is equal to 98.6% when [HNO3]=7M. The extraction reactions follows a neutral partition or ionic exchange mechanism depending on nitric acid concentration. The nature of bonding in the extracted complexes was investigated by spectroscopic techniques. The potential use of Mor1-8-OP for the separation of UO22+ from a mixture containing transition metal ions Mn+ was also examined. The UO22+ ions were separated and extracted efficiently. These ILs are promising candidates for the recovery and separation of uranium.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call