Abstract

Electrosynthesis of urea from CO2 and NO3− is a sustainable alternative to energy‐intensive industrial processes. The challenge hindering the progress is the development of advanced electrocatalysts that yield urea with both high Faradaic efficiency (FE) and current density. In this work, we designed a new two‐dimensional MOF, namely PcNi−Fe−O, constructed by nickel‐phthalocyanine (NiPc) ligands and square‐planar FeO4 nodes. PcNi−Fe−O exhibits remarkable performance to yield urea at a high current density of 10.1 mA cm−2 with a high FE(urea) of 54.1% in a neutral aqueous solution, surpassing those of most reported electrocatalysts. No obvious performance degradation was observed over 20 hours of continuous operation at the current density of 10.1 mA cm−2. By expanding the electrode area to 25 cm2 and operating for 8 hours, we obtained 0.164 g of high‐purity urea, underscoring its potential for industrial applications. Mechanism study unveiled the enhanced performance might be ascribed to the synergistic interaction between NiPc and FeO4 sites. Specifically, NH3 produced at the FeO4 site can efficiently migrate and couple with the *NHCOOH intermediate adsorbed on the urea‐producing site (NiPc). This synergistic effect results in a lower energy barrier for C−N bond formation than those of the reported catalysts with single active sites.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call