Abstract

Equilibrium of three reactants (oxygen, proton and electron) in oxygen reduction reaction at large current flux is necessary for highly efficient electro-generation of H2O2. In this work, we investigated reactants equilibrium and H2O2 electrochemical production in liquid-gas-solid three phase interfaces on rolling cathodes with high electroactive area. Electrocatalytic reaction accelerated the electrolyte intrusion into hydrophobic porous catalyst layer for higher electroactive surface area, resulting in a 21% increase of H2O2 yield at 15 mA cm−2. Air aerated cathode submerged in air/O2 aeration solution was unable to produce H2O2 efficiently due to the lack of O2 in three phase interfaces (TPIs), especially at current density > 2.5 mA cm−2. For air breathing cathode, stable TPIs inside the active sites was created by addition of gas diffusion layer, to increase H2O2 production from 11 ± 2 to 172 ± 11 mg L−1 h−1 at 15 mA cm−2. Pressurized air flow application enhanced both oxygen supply and H2O2 departure transfer to obtain a high H2O2 production of 461 ± 11 mg L−1 h−1 with CE of 89 ± 2% at 35 mA cm−2, 45% higher than passive gas transfer systems. Our findings provided a new insight of carbonaceous air cathode performance in producing H2O2, providing important information for the practical application and amplification of cathodes in the future.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.