Abstract

The objective of this study was to produce green phenolic resins and adhesives using bio-phenolic compounds produced from lignin/forestry residuals. To produce bio-phenolic compounds, an organosolv lignin (OL) was catalytically degraded in 50/50 (v/v) water–ethanol and pure ethanol media under sub/supercritical condition in hydrogen atmosphere. Effects of lignin degradation process conditions (catalyst, temperature, type of reactor, etc.) on the yields and properties (molecular weights) of the degraded lignin (DL) products were examined in this study. The DL products were used to substitute for phenol in the synthesis of bio-phenol formaldehyde resins, denoted as degraded lignin phenol-formaldehyde (DLPF) resins, whose properties (such as viscosity, non-volatile contents, storage time, free formaldehyde contents, curing behavior, and thermal stability) were compared with pure PF resin and organosolv lignin phenol-formaldehyde (OLPF) resins. Plywood samples glued with the OLPF and DLPF adhesives with a phenol replacement ratio up to 75wt% showed higher dry and wet tensile strengths than those of PF adhesives. Although the OLPF adhesives have better bond strengths and thermal stability than DLPF adhesives, the DLPF resins have a lower free formaldehyde content and can be cured at a lower temperature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call