Abstract

A series of copper doping LaFeO3 perovskite (LaCuxFe1−xO3, LCFO, x = 0.1, 0.4, 0.5, 0.6, 0.9) are successfully synthesized by the sol-gel method under mild conditions. In this study, it is applied for the activation of peroxymonosulfate (PMS) for bisphenol A (BPA) removal. More than 92.6% of BPA was degraded within 30 min at 0.7 g/L of LCFO and 10.0 mM of PMS over a wide pH range with limited leaching of copper and iron ions. The physical–chemical properties of the catalysts were demonstrated by using X-ray diffraction (XRD), N2 adsorption–desorption isotherms, scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). Furthermore, the effects of catalyst dosage, PMS concentration, initial pH value, and inorganic anions on the LCFO/PMS system were fully investigated. Quenching experiments were performed to verify the formation of reactive oxidant species, which showed that the radical reaction and mechanisms play a great role in the catalytic degradation of BPA. The perovskite LCFO is considered a stable, easy to synthesize, and efficient catalyst for the activation of PMS for wastewater treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.