Abstract
A major problem with mRNA therapeutics is that mRNA is usually degraded within a few hours after entering the cytosol. New approaches for invitro synthesis of circular mRNA have allowed increased levels and duration of protein synthesis from mRNA therapeutics due to the long half-life of circular mRNA. However, it remains difficult to genetically encode circular mRNAs in mammalian cells. Here, we describe the adaptation of the Tornado (Twister-optimized RNA for durable overexpression) system to achieve in-cell synthesis of circular mRNAs. We screen different promoters and internal ribosomal entry sites (IRESs) and identify combinations that result in high levels of circular mRNA and protein expression. We show that these circular mRNAs can be packaged into virus-like particles (VLPs), thus enabling prolonged protein expression. Overall, these data describe a platform for synthesis of circular mRNAs and how these circular mRNAs can improve VLP therapeutics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.