Abstract
Three-dimensional (3D) zinc oxide nanosheets (ZnO-NS), assembled on the FTO coated glass substrates after chemical treatment, have been achieved via a simple yet effective chemical bath deposition technique. The exploration of chalcogenide nanoparticle sensitization on ZnO-NS thin-film photoanodes led us to a spectacular enhancement in the photoelectrochemical conversion efficiency for solar-driven water splitting process as compared to the bare 3D-ZnO-NS. The maximum incident photon-to-charge carrier efficiency of bare 3D-ZnO-NS has been enhanced by approximately four folds as a result of cadmium sulfide (CdS) and cadmium selenide (CdSe) sensitization and the efficiency value have reached to 51% at 550 nm. Besides, the maximum charge injection and charge separation efficiencies of the ZnO–CdSe electrodes have been calculated as 93% and 64%, respectively. Numerical examination of the optical absorption and electrical field distribution has been performed via the finite-difference time-domain (FDTD) method in order to investigate the basis of the enhancement in the photoelectrochemical efficiencies of the 3D-ZnO-NS photoelectrodes. FDTD numerical simulation proved that the accumulation of rectangular 2D-nanosheets of ZnO in 3D-microspherical forms enhanced the light absorption significantly. Moreover, FDTD results also verified that the optical absorption of the ZnO electrodes has been extended from ultraviolet to visible region via CdS and CdSe nanoparticle deposition.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have