Abstract

The oxidative esterification of aldehydes under mild conditions remains a significant challenge. This study introduces a unique defective UiO-66 to achieve gold nanoclusters (AuNCs) for efficient aldehyde oxidation under mild conditions. The construction and characterization of these materials are thoroughly investigated by techniques of XRD, SEM and TEM images, FT-IR, Raman, and XPS spectrum, emphasizing the unique microporous in defective UiO-66 are conducive to the fabrication of AuNCs. The catalytic performance of the prepared materials in aldehyde oxidation reactions is systematically evaluated, demonstrating the remarkable efficiency of dispersed Au@UiO-66-25 with high-content (9.09 wt%) Au-loading and ultra-small size (~2.7 nm). Moreover, mechanistic insights into the catalytic process under mild conditions (70 °C for 1 h) are provided, elucidating the determination of defective UiO-66 in the confined fabrication of AuNCs and subsequent furfural adsorption, which underlie the principles governing the observed enhancements. This study establishes the groundwork for the synthesis of highly dispersed and catalytically active metal nanoparticles using defective MOFs as a platform, advancing the catalytic esterification reaction of furfural to the next level.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.