Abstract

Gold nanoclusters (AuNCs) are widely used in the fluorescence detection of biomolecules in human serum due to their good fluorescence properties, low toxicity, and better biocompatibility. However, the weak fluorescence intensity of AuNCs limits the fluorescence detection of molecules within a wide concentration range. It is reported that coating AuNCs in ZIF-8 with adjustable pore size can effectively improve the fluorescence intensity of AuNCs and broaden the detection range. And the AuNCs wrapped in the gaps of ZIF-8 can prevent the fluorescence quenching caused by the aggregation of AuNCs. However, ZIF-8 has high crystallinity, poor dispersion, and easy deposition, which reduces the fluorescence stability of the detection system and affects the detection. Based on the above research, the highly hydrophilic polymer PEI was modified to the surface of ZIF-8, and a kind of nanocomposite material AuNCs/ChOx@ZIF-8/PEI was obtained by co-encapsulating AuNCs prepared with glutathione as a ligand and cholesterol oxidase (ChOx) into ZIF-8 modified with PEI. The composite material emits strong red light at 650nm under the excitation of 395-nm light, and the system can sensitively detect cholesterol (Chol) in human serum. Compared with other materials, the PEI-modified composite has better solubility and stability, so the detection effect of Chol is better. Encapsulation of ChOx in the ZIF-8 shell can protect the enzyme and increase the local concentration of ChOx, thereby speeding up the reaction rate. Compared with free AuNCs/ChOx, the quenching rate of AuNCs/ChOx@ZIF-8/PEI system is doubled. Secondly, the addition of Fe2+ to the detection process results in higher quenching rate and detection sensitivity. The system can detect Chol in the concentration range 0.1-2.4μM, with a detection limit of 0.073μM. The determination is a fast and sensitive strategy. In addition, the practicability of this assay in the detection of Chol in human serum has been verified. Due to its selectivity and sensitivity, it has potential application value in clinical diagnosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.