Abstract
Bimetallic nanoparticles, a new class of materials for catalysis, were intensively investigated. Highly dispersed Ir–Ni bimetallic nanoparticles with varying mole fractions were synthesized by modified polyol reduction method from the solution of iridium trichloride and nickel chloride in ethylene glycol, which acts as both solvent and reducing agent. The particles were characterized for their size, morphology and composition using various techniques like UV–Vis, Fourier transform infrared (FT-IR), X-ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscopy (FE-SEM) and X-ray photo electron spectroscopic (XPS) techniques. The synthesized nanoparticles were in pseudo-spherical morphology and utilized as catalyst for the degradation of dyes. The feasibility of degradation of an azo dye i.e., metanil yellow (MY) in aqueous alkaline medium by hexacynoferrate (III) ions using Ir–Ni bimetals as catalyst, prepared in different molar ratios, was investigated. Results show that Ir–Ni (2:1) bimetals have good catalytic activity and degradation as compared to Ir–Ni (1:2) due to their small size and high stability for the oxidation of MY.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.